当前位置:首页 > 教学资料 > 教学设计

《倒数》教学设计

时间:2024-01-12 23:27:26
《倒数》教学设计

《倒数》教学设计

作为一无名无私奉献的教育工作者,常常要写一份优秀的教学设计,借助教学设计可以更好地组织教学活动。那么写教学设计需要注意哪些问题呢?以下是小编精心整理的《倒数》教学设计,欢迎阅读与收藏。

《倒数》教学设计1

教学目标:

1、认识倒数,理解倒数的意义,掌握求倒数的方法。

2、 提高学生观察、比较、、概括的能力以及感悟“变通”的数学思想。

教学重点:倒数的意义与求法。

教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

教学准备:卡片(6条规律),练习纸(课后习题4),比赛用纸(表格),PPT课件(比赛内容,延伸等)

一、 游戏比赛

1、 学习之前,让我们先来个“设计接力”赛,怎么样?

比赛内容:请你设计有两个因数相乘的算式,并使乘积为1。

比赛规则:每人每次设计一式,写完后按顺序立即传给小组内其他成员。

比赛时间:1分钟。

比赛结果评定标准:写得又对又多的为胜。(重复的只能算一个)

2、组织评议:实物投影,每组一位学生读算式,全班监督是否正确。根据数量评选出优胜小组。

二、倒数的意义

1、短短一分钟,大家就设计了这么多的算式,如果再给你们一些时间,你们还能写吗?能写多少个?

所有这些算式中,两个因数的乘积都为1,像这样,乘积是1的两个数互为倒数。(板书乘积是1的两个数互为倒数,重点标“互为”)。

2、 理解“互为”。

(1)问:“互为”是什么意思?(互相)

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如()乘()等于1,所以()和()互为倒数,也可以说(A)是(B)的倒数或者(B)是(A)的倒数。

(3)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?

(4)想一想,在我们学过的数的概念中,哪些数也不能单独表示一个数?(约数、倍数、互质数)

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、倒数的写法

1、刚才,你们设计这些乘法算式时有什么窍门吗?(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)

(若有小数乘法。问:0.25*4=1这道算式,我怎么没看出分子分母倒一下呢?)

(0.25就是,分子分母倒过来是,就是4)所以0.25的倒数是4。

2、根据你的经验,你能说出它们的倒数吗? (显示: 6)

第一个:应该怎样规范的书写呢?请你在自备本上试一试。指名板演。

最后两个说说是怎样想的。

3、你觉得应该怎样求一个数的倒数?

(把分数的分子分母调换位置)

4、一个数的倒数你会求了吗?谁愿意上来考考大家?你说一个数,我们说出它的倒数。

在报数中得出:1的倒数是它本身。0没有倒数。卡片出示,分别分析为什么。

(有可能有学生报小数或带分数,集体探讨怎样求小数或带分数的倒数。)

四、深化认识

1、小组合作

请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

2、 交流发现:

师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

(3/4的倒数是4/3,2/5的倒数是5/2,6/11的倒数是11/6,这组分数都是真分数,它们的倒数都是假分数。)

师:是不是所有真分数的倒数都是假分数?

(出示卡片:所有真分数的倒数都是假分数)

师:谁来说说第二组

(3/2的倒数是2/3,6/5的倒数是5/6,9/7的倒数是7/9,这组分数都是假分数,它们的倒数都是真分数。)

师:是不是说所有假分数的倒数都是真分数?

(不是所有的假分数的.倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

师:你说的就是等于1的假分数。 而第二组中的分数都是什么样的假分数?

(都是大于1的假分数。)

所以——(卡片出示:大于1的假分数的倒数都是真分数。)

师:第3组呢?

(…… 这组分数的倒数都是整数。)

这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)

(卡片出示:分数单位的倒数都是整数)

师:第四组呢?

(…… 这组都是整数,整数的倒数都是分子为1的真分数。)

师:是不是所有整数的倒数都是分数单位?

(出示:非零整数的倒数都是分数单位)

师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

3、现在,你认识倒数了吗?真的认识了?那就请你来辨一辨。(课件显示)

(1)、得数是1的两个数互为倒数。

(2)、9的倒数是9/1。

(3)、1的倒数是1,0的倒数是0。

(4)、1/6是倒数。

(5)、因为x×y=1(x≠0,y≠0),所以x和y互为倒数。

(6)、所有假分数的倒数都是真分数。

4、今天这节课,我们学习了——。你觉得最令你高兴的收获是什么?

关于倒数,你还想知道些什么呢?

思考一:1的倒数是多少?你觉得应该怎样求一个带分数的倒数?

思考二:小数有倒数吗?如果有,该怎样求?

五、学科融合

最后,让我们轻松一下。我们来看看语文中有趣的“倒数”现象。(课件显示)

如汉字“吴——吞”,“杏——呆”;很有趣吧!

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客 ”, 这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。

《倒数》教学设计2

教学目的:

1.使学生感知倒数的意义,掌握求倒数的方法,学会对 ……此处隐藏15645个字……1、在计算、比较、观察中,发现倒数的特征并理解倒数的意义。

2、掌握求一个数的倒数的方法。

3、在教学活动中,培养学生归纳、推理能力。

【教学重点】

发现倒数的特征,理解倒数的意义。

【教学难点】

掌握求一个数的倒数的方法。

【教学方法】

创设情境、激趣质疑、自主探究、合作学习。

【教学课时】

一课时

【教学过程】

一、创设情境,导入新课

1、谈话:同学们,由于教师调动本学期我成了咱们班的数学老师,经过这几天的相处,我们都互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?

2、猜字谜:

同学们说的很好!咱们再来猜个字谜吧!

“吞”字上下颠倒是什么字?(吴)

“呆”字上下颠倒又是什么字?(杏)

3、引入新课:汉字真奇妙啊,把一个字的上下部分颠倒就可能会变成另外一个字,其实,在数学里也有这种奇妙的现象!你们想知道吗?猜猜看,谁能举出这样的例子。例如把倒过来就变成,颠倒就变成了,也就是( 7 )。我们给这些数起个名字就叫倒数(板书课题:倒数)

二、观察比较,抽象概念 71233217

1、课件出示课本24页8道算式,引导学生观察。

3111812×=() 2×=() ×=() ×10=( ) 22831110

915761×=() 7×=() ×=() ×5=() 776955

2、分组讨论: (1)、这些算式有什么特点?(预设:此处根据学生的回答,分子与分母相互颠倒。)

(2)、这些算式的结果有什么特点?(预设:此处根据学生的回答,乘积是1。)

3、小组交流,教师点评。

4、引导归纳倒数的概念:乘积是1的`两个数互为倒数。(教师板书,学生口述。) 5、倒数的概念中哪些词比较重要?

(预设:此处根据学生的回答,依次理解两个数、乘积是1、互为。) 同学们可真是火眼金睛啊,关键词都找出来了!让我们再大声说一次什么是倒数。(生齐说概念 )倒数还有什么特点呢?(分子和分母相互颠倒)

6、教师小结:互为倒数的两个数的乘积必须是1,倒数是对两个数来说的,它们是互相依存的关系,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

7、你能说说大屏幕上的口算题中,谁和谁互为倒数吗?谁的倒数是谁?

生:因为( )×( )= 1 ,所以( )的倒数是 ( ),( )的倒数是 ( ),( ) 和( ) 互为倒数。

(此处引导学生说4句话,在进一步理解倒数意义的基础上,规范学生的数学语言)

8、你还能举出其它的例子来吗?请同桌同学互相说一些互为倒数的

例子,他说得对吗?你们怎么知道是对的?

(预设:用倒数的概念验证,把两个数相乘,看结果是否等于1。如果学生在此处举出特殊数1、0,则顺着学生的想法,及时展开讨论。如果没有则在下一环节进行。)

9、及时练习,巩固新知:我来当小老师。(判断对错,说清理由。)

(1)、2是的倒数。 ( )

(2)、和是1的两个数互为倒数

(3)、计算结果得1的两个数互为倒数。() (4)、因为×=1,所以是倒数。( )

三、引导探究,掌握方法

1、同学们已经认识了倒数,那么你们能根据刚才所学找到下面各数的倒数吗?(能)那就请同学们进入闯关环节,先独立完成,遇到困难可以同伴互助,看看哪些同学和小组能连闯三关,开始!

2、生开始做题,师巡视。(课件出示)

第一关:的倒数是( ),的倒数是(),的倒数是()。 第二关:4和( )互为倒数,5和( )互为倒数。

第三关:1的倒数是( ),0的倒数是( )。

3、全班交流反馈。

那么0的倒数又是几呢?(有争议)预设:

生:因为1的倒数是1,所以0的倒数是0.

生:可以把0看做,他的倒数就是。

生:对,0不能做分母,也不能做除数,所以0没有倒数。

生:0与任何数相乘都不得1,而是得0,所以我也觉得0没有倒数。 师:小结强化0的确没有倒数。

4、小结闯关情况:连闯三关的同学起立,你们真是善于动脑的同学,好样的,庆祝一下!掌声送给你们!

5、归纳方法:同学们通过闯关已经学会求一个数的倒数了,请你试 011034521923322312

着总结出求一个数的倒数的方法。

(1)课件:求一个数的倒数,只要把这个数的分子、分母调换位置。

(2)请问:这个数中包含0吗?0有没有倒数呢?

(3)完成板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

(4)课件:演示方法

6、质疑:关于如何求一个数的倒数大家还有什么疑问吗?

预设:⑴生:我想知道带分数的倒数怎么求?

⑵生:老师我也有一个问题:小数有倒数吗?

《倒数》教学设计15

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的.倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

《《倒数》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式