《烙饼问题》教学反思
身为一位优秀的老师,我们都希望有一流的课堂教学能力,对学到的教学新方法,我们可以记录在教学反思中,那么优秀的教学反思是什么样的呢?以下是小编为大家收集的《烙饼问题》教学反思,仅供参考,大家一起来看看吧。
《烙饼问题》教学反思1临近期末,“数学广角”的知识成了这段时间的教学重点。本册(四年级上册)的“数学广角”包括了:烙饼问题、合理安排时间(统筹方法)、排队求等候时间总和、田忌赛马(对策论)这四个内容。看看课时安排,只有四课时,书上的内容,也好像很浅显。可是实际教学当中,要把各种方法在课堂中落实下去,知道过程,掌握方法,灵活运用,这其中的容量是很大的。下面就“烙饼问题”谈谈自己的想法:
“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题向学生渗透简单的优化思想,让学生从中体会统筹思想在日常生活中的作用,感受数学的魅力。本节课我立足于培养学生良好的思维能力,从学生的生活经验和原有的基础知识出发,创设生活情境,以“烙饼”为主题,让学生借助学具操作,围绕怎样烙饼,亲身经历探索“烙饼”中数学知识的过程,逐步掌握烙饼的最佳方法。在本课教学中,我突出了以下几点:
本节课我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼”展开教学,设计了烙1张、2张、3张……单张,双张饼的探究过程。
在本课的教学中,我以烙3张饼作为教学突破点,首先引导学生观察、理解情境图里的内容,理解了问题情境和需要解决的问题后,让学生独立思考,再分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间烙完。学生可能会有不同的方案,我把各小组汇报的不同方案在黑板上展示出来,让大家来比较各种方案的优劣。这一环节是让学生形成从多种方案中寻找最佳方案的`意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
然后,我又分别让学生讨论烙4——9张饼的最佳方法,从而总结得到规律:双数张饼就2张2张地烙;单数张饼就用最优方法先烙3张,然后再2张2张的烙,或者先2张2张地烙,剩下3张的时候用最优方法烙。至于求“最少要用多长时间”这个问题,用次数×每次所用时间即可。
相信学生,放手让学生探索解决问题的方法,是本节课的成功之处。学生通过动手操作,探索尝试,再进行比较,既有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。
《烙饼问题》教学反思2本节课让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。
成功之处:
1.重视学生动手操作,在操作中发现规律。在教学中让学生利用准备的圆片进行动手操作,通过操作学生会出现如下几种情况:
(1)每次烙完一张饼,6+6+6=18(分钟)
(2)第一次烙1号和2号饼的正面,第二次烙1号和2号饼的反面,第三次烙3号饼的正面,第四次烙3号饼的反面,3+3+3+3=12(分钟)
(3)第一次烙1号和2号饼的正面,第二次烙1号的反面和3号饼的正面,第三次烙2号和3号饼的反面,3+3+3=9(分钟)
然后教师让学生进行观察,哪种方法可以尽快吃上饼呢,为什么?小组进行交流和讨论,最后达成共识:每次总烙2张饼,别让锅空闲,这样应该最省时间。
在此基础上,教师进一步提出问题:如果要烙4张饼、5张饼、6张饼……呢?你发现了什么?由此得出:饼的张数×每面烙的时间=所需最少时间。
2.延伸拓展,启迪思维。在学生发现烙饼的规律后,教师提出当每次最多能烙3张饼,这个规律是否依然适用呢?你又会发现什么呢?学生经过思考发现只要把饼的张数×每面烙的时间=所需最少时间转化为总面数÷每次可烙的面数×每面烙的时间=所需最少时间就可以得出答案。在这个过程中“总面数÷每次可烙的面数”实际上就等于饼的'张数。
不足之处:
由于对烙饼问题进行了拓展,导致练习时间不充分,学生对于烙饼问题的规律掌握不够熟练,出现了应用规律解决问题时学生对于每面烙的时间理解不到位,把每面烙的时间和烙一张饼所用的时间混淆,没有注意到必须用饼的张数乘每面烙的时间。
再教设计:
对于烙饼问题的拓展可以留给学生课后进行思考,应该留有更多的时间对本节课的问题进行针对性的训练,不留知识上的盲点。
《烙饼问题》教学反思3“烙饼问题”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。关于这方面的教学建议,《数学课程标准》指出:让学生借助学具操作,经历探索数学知识的过程,逐步掌握最佳方法,通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在解决实际问题中的应用价值,来感受数学的魅力。
在课堂教学中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕大问题“怎样烙饼才能尽快吃上饼?”展开教学,循序渐进设计了烙2张、3张、多张饼的探究过程。为什么不提烙1张饼的过程,我是从两个方面去思考的:一是从解决问题的角度出发,给定信息中明确了每次可以烙2张饼,没有必要浪费;二是在建构数学模型的过程中不便于建立“饼数×3=最少时间”的数学模型;还有就是在烙3张饼时就会碰到烙1张饼的情况,这也会成为学生学习中的一个强大认知冲突,我就以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的.时间和空间。学生小组合作中重点讨论烙3张饼的思维过程,学生将烙饼的方法记录在作业纸上,代替烙饼的纸都编了号、并且注明了饼的正面、反面,汇报时学生讲述起来非常清晰完整。通过合作、学生动手操作想一想,说一说,摆一摆的过程让学生真正动眼、动手、动脑参与获取知识的过程。学生们做到了在操作中感知,在实践中升华,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。
在发现数学规律、建构数学模型的过程中,我让学生仔细观察表格、小组讨论交流,说一说自己的发现。(根据情况决定是否给学生启示:1、仔细观察烙饼的张数和烙饼所需要的时间,你发现了什么?2、仔细观察烙饼的张数不同烙饼的方法有什么不同?)
学生在充分交流探讨的基础上,得出结论:1、如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张用快速烙饼法最节省时间。(我们把自己探讨的烙3张饼的方法称为快速烙饼法)得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。(饼数×3=所需最少的时间。)
本节课 ……此处隐藏7816个字……间“这一规律,使整节课得到升华,数学教学不仅是传授知识的结果,更重要的是探究知识的形成过程,它不仅仅是承载数学知识的地方,它更是学生全面发展的场所,教师只有不断加强学习,不断提升专业技能,才能给学生一个创新的课堂,一个发展的课堂。
《烙饼问题》教学反思12“烙饼问题”是人教版义务教育课程标准实验教科书,四年级上册P112“数学广角”的内容。和以往的教材相比,是新增加的内容。主要目的是通过一些简单的问题,向学生渗透一些优化的数学思想。教学目标是通过烙饼问题,使学生认识解决问题策略的多样性,形成寻找解决问题最优方案的意识,初步感受优化的数学思想方法。让学生体会数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。但是,“烙饼问题”学生是陌生的,而且“烙3个饼”的最佳方法与实际生活是有距离的,给学生的理解带来了困难。如何突破难点,让学生真正掌握,初步感受优化的数学思想方法呢?本节课我能做到以下几点:
1.创造性地使用教材,打破常规教学。
很多老师在教学这个内容时,都是从烙一张饼、两张饼所需要的最短时间学起,这样设计比较接近学生的“最近发展区”,容易从1张饼、2张饼的方法得出烙3张饼所需最短的时间,但是这样设计也是将难点放低了,学生不需要进行太多的思考,学生的创新思维能力没有得到很好地发展。而我大胆的直接提出“烙3个饼至少要多少分钟”来教学,因为要想解决“烙3个饼至少要多少分钟”必须也要考虑烙1张饼和两张饼所需的最短的时间。我认为这样的设计很有魄力,让学生通过不断的探究、比较与讨论,终于使学生从中得出烙3张饼的最佳烙法,这种引导学生主动探索、大胆创新的教学,能更好地培养学生创造性思维的发展。
2.充分发挥学生的主体地位,让学生有广阔的思维空间。
“把课堂还给学生,让课堂充满生命活力”,这是叶澜教授建立的“新基础教育”的核心理念。她主张“当前我国基础教育中课堂教学的价值需要从单一地传递教科书上的呈现的现成知识,转为培养能在当代社会中实现主动健康发展的一代新人”。这就要求教师应把“学习的基本权利”还给学生,使学习的主动权真正掌握在学生自己的手中。新课标也强调教师只是教学过程的组织者、引导者和参与者。在本节课,本人能始终把学生放在学习的第一位。本课以烙饼问题组织一系列的观察、思考、操作、交流等活动,使学生在解决问题中体会数学方法的应用价值,体会优化思想,而不是以老师的`想法代替学生的思维。比如,“烙3张饼,怎样烙才能尽快让大家吃上饼”,让学生在观察、操作、对比的过程中掌握最佳烙法;又如,在总结“烙饼的总时间=烙饼个数×每面要烙的时间”这一规律时,老师没有简单的将结论给出,而是先让学生解决“烙4张、5张、6张、7张饼”最短需要几分钟,然后再提出“如果要烙100张饼最少需要几分钟”,促使学生积极主动地去寻求规律,让学生思维不断碰撞,最终生成“求最佳烙法所要的时间的方法”,上升到构建数学模型,形成数学理念的高度。整节课能使学生的主体地位落到实处,真正使学生成为学习的主人。
3.引导自主探索、合作交流,感悟优化思想
新课标提出:自主探索与合作交流是学生获取知道的学习方式之一。本节课在教学中本人立足学生的“数学现实”,先激活学生已有的知识与经验积淀。在此基础上,让学生通过观察、操作、归纳、猜想、交流等活动来激发学生的学习兴趣和发展思维能力。放手让学生讨论,并鼓励学生积极思考,始终让学生面对有意义的、富有挑战性的问题。在独立思考、自主探索的基础上,组织学生进行合作交流是重点环节。直至将“想法”与“发现”提炼、升华为一定的规律性认识。在交流过程中,教师与学生、学生与学生的思维相互碰撞,重现课堂开放、生动的本来面目。如为了寻求“烙3张饼,最少需要多少时间”的优化方法,让学生动手操作、自主探索、合作交流,学生在这一过程中充分发挥了各自的聪明才智,所获得的是知识与技能、过程与方法、情感态度与价值观的综合发展。学生的新的认识不是通过教师板着面孔的说教得到的,而是来自于发挥集体智慧的讨论,是学生自己“悟”出的,变“教”为“探”,环环相连,激活课堂。学生通过自己动手操作、自主探索,发现了优化思想在生活中的应用的妙处,体验到了成功的快乐。
一节课下来,也有几点值得深思,反思自身,在很多方面还需努力啊,主要罗列几点,提示自己:
1.课堂情绪调控有待加强,教师受学生的状态影响较大,不能很好的自我调节。
2.我对于课堂上学生的生成性问题,处理的不到位。
3、一个小小的疑惑:很多教师提出疑问,本节课的教学设计与众不同,是否合适呢?会不会拔高要求?
《烙饼问题》教学反思13在教学过程中,我以“烙饼”为主题,围绕“怎样烙饼,才能尽快吃上饼?”并利用多媒体课件,展开教学,设计了烙1张、2张、3张----多张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律的过程。为了更好地突破难点,突出重点,我采用了下面的方法:
1、设计可操作学具。考虑到学生是第一次接触统筹问题,为了帮助学生在探索中体验,在体验中发现,课前我针对例题设计制作了相关的学具,用圆片代表饼,这样便于学生借助学具的操作,在直观中调整,在操作中发现,能更加自然地感悟简单的优化思想。
2、动手操作,理解方法。动手实践可以让学生获取大量的表象经验,使抽象的数学知识形象化,加深对知识的理解。抓住了烙3个饼最少要用多少分钟这个难点,让学生通过操作,说理,再操作来加深印象,体会最少用9分钟的道理。在研究3张饼的烙法时,先让学生进行猜想、然后动手操作并给同桌展示说明,学生经历了在操作中思考,在思考中操作的.过程,通过同桌合作,形成了自己烙3张饼的方法,接着,由学生展示不同的烙法,并从中选择出烙3张饼的最佳方法,这样,学生解决了烙饼需要最短时间中的基本问题。在最后又安排了“如果要烙的是4张饼,5张饼……10张饼呢?你发现了什么”。让学生完成表格。发现“饼数×3=最快时间”;如果要烙的饼的张数是双数,就两张两张的烙就可以了,如果要烙的饼的张数是单数,就先两张两张的烙,最后3张饼用轮流烙饼法烙,这样做最节省时间”这些规律。
但是在教学中,我也存在着不足,一节课下来,也有几点值得深思,反思自身,在很多方面还需努力啊,主要罗列几点,提示自己:
1、放手的力度不够,特别是让学生找烙饼规律时,我讲的还是太多,此外本节中练习的不多,还需要搜集练习。
2、在课堂上要多用激励性语言来鼓舞学生,语言还应再简练些。
3.课堂情绪调控有待加强,受学生的状态影响较大,不能很好的自我调节。
4.我对于课堂上学生的生成性问题,处理的不到位。如:有一名学生自豪的说:“老师我可以6分钟完成,就是把第三张饼分成两半放到锅的两边一起烙就行了。”等像这类的问题处理的不到位。