《平行四边形的面积》教学反思
作为一位刚到岗的教师,我们的工作之一就是课堂教学,通过教学反思可以有效提升自己的教学能力,那么什么样的教学反思才是好的呢?下面是小编精心整理的《平行四边形的面积》教学反思 ,希望能够帮助到大家。
《平行四边形的面积》教学反思 篇1为了能更好地使用使用信息技术,有效地完成教学目标,本课时充分利用学生计算长方形面积的经验,引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程。具体如下:
一、复习引入
复习长方形的周长和面积,目的是唤醒学生已有的知识储备,为后续的学习奏响了前奏。
二、探究新知
“数学教学是数学活动的教学,是师生之间、学生之间和生本之间交往互动、共同发展的过程。”复习长方形的面积后,让学生试算平行四边形的面积,由此产生了正迁移和负迁移的两种解法,教师先用数方格的方法进行验证,得出了邻边乘邻边是错误的,正确的方法是底乘高。然后利用多媒体课件根据平行四边形容易变形的特点,把平行四边形拉成了长方形,让学生清楚地看到邻边乘邻边计算的`是长方形的面积而不是平行四边形的面积。再让学生利用手中的学具验证是不是所有的平行四边形的面积都可以用底×高来计算,在这个过程中,要求同桌讨论,确实不懂的请教书本,再验证。最后学生展示不同形状的平行四边形面积都可以用底×高来计算,最后,教师利用课件演示操作过程,并进行总结:用剪拼的方法把平行四边形转化成已学过的长方形后,面积不变,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高。长方形的面积等于长×宽,所以平行四边形的面积等于底×高。教师与学生共同探讨、反思、和谐共进。生与生之间,思想相互碰撞、观点相互交锋,提高了交流、沟通的能力。同时,也使知识在对话中生成。学生与课本对话,使学生的主体意识与课本之间互相交流、双向互动, “静态”的教材在学生创造性地延伸拓展中,焕发出更加鲜活的生命力。整个过程中,师生之间、生生之间、生本之间的对话得到了充分的展现,谱写了一首旋律优美的主题曲。
三、拓展应用
整个习题设计部分,虽然题量不多,但却涵盖了本节课的所有知识点。第一题,通过学生的分析,同学们懂得计算平行四边形面积必须是相对应的底乘以高。而第二题,由一个简单的问题,让学生通过画图、观察、师生对话,进行逻辑推理,使学生明白等底等高的平行四边形的面积相等,面积相等的平行四边形不一定等底等高。
四、师生总结
由一句“把你最高兴的说出来和大家分享一下”,师生互动,概括出本节课渗透的思想方法:在数学学习中,转化是一种很好的方法。
当然,这节课还存在许多不足,如:
1、没有好好利用学生生成的资源。
2、老师的评价语言过于简单化等。
恳请各位领导和同仁提出宝贵意见。谢谢!
《平行四边形的面积》教学反思 篇2平行四边形的面积是五年级上册几何图形计算的资料,本节课的教学,我能够看到学生兴趣盎然,始终以积极的态度、主人翁的姿态投入到每一个环节的学习中。我认为本节课成功的关键在于教师大胆放手,学生经过自主探究得到了知识,获得了发展。主要体此刻以下几个方面:
(一)创设生活情境,激发探究欲望
小学数学资料来源于生活实际,它应当是现实的,有意义的、富有挑战性的。创设与学生的生活环境和知识背景密切相关的又是学生感兴趣的学习情境有利于让学生 本节教学中,我带领学生进行实地考察,看到了平行四边形来源于生活实际,也体会到了计算它的面积的用处,这就使学生对学习的资料产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,使学生能以饱满的热情投身于新知识的探究之中。
(二)重视学生的自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是期望感到自我是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要异常强烈。”上述这个教学片断中,对传统的平行四边形面积的教学方法作了大胆改善,教学中我有意设计了曹冲称象这个同学们都熟悉的故事引入,其用意一方面是激发学生的学习兴趣,另一方面是孕伏了转化的数学思想。为学生解决关键性问题—把平行四边形转化为长方形奠定了数学思想方法的基础。
这一设计意图在教学中得到了较好的体现,课后调查发现全班有近一半的同学想到了把平行四边形转化成已经学过的'图形这一方法。之后教师鼓励学生用自已的思维方式大胆地提出猜想,由于受长方形面积公式的干扰,有的同学认为:平行四边形面积等于两条相邻边的乘积。对于学生的猜想,教师均给予鼓励。因为虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不一样的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。因为教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们能够自由地思考、猜想、实践、验证。
才得到“灵感”的,而平行四边形转化成长方形的各种方法正是团体智慧的结晶。学生仅有在相互讨论,各种不一样观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的本事才能不断得到增强。海纳百川,有容乃大。
(三)培养学生的问题意识
问题是数学的心脏,能给学生的思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,教师的提问切忌太多、太小、太直,那种答案显而易见的一问一答式的问题要尽量减少。上述教学片断中,为了引导学生进行自主探究,我设计了这样一个问题:“你能想什么办法自我去发现平行四边形面积的计算公式呢?”这一问题的指向不在于公式本身,而在于发现公式的方法,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、实践、猜想,并积极探求猜想的依据。当学生初步用数方格的方法验证自我的猜想后,我又提出了这样一个问题:“这种方法行的通吗?”这个问题把学生引向了深入,这不仅仅使学生再次激发起探究的欲望,使学生对知识理解得更深刻,同时更是一种科学态度的教育。其次,要积极鼓励学生敢于提出问题。
教师对学生产生的问题意识要倍加呵护与尊重,师生之间应坚持平等、和谐、民主的人际关系,消除学生的紧张感,让学生充分披露灵性,展示个性。在上述教学片断中,我积极的鼓励学生进行大胆的猜想,提出自我的问题。于是,“平行四边形面积该怎样求?是等于两条邻边乘积还是等于底乘高?”“该怎样来验证自我的猜想呢?”“怎样用数方格来数出平 ……此处隐藏7689个字……正理解和掌握基本的数学知识、技能、思想和方法。” 《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。具体概括为以下几点:
一、注重数学思想方法的渗透
在教学设计方面,教师先是让学生计算不规则图形的面积,引导学生把不规则图形转化为学过的`图形,进而计算出它的面积。这样就为这节课运用转化的思想学 数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,教师设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。
在此,教师特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动
新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
《平行四边形的面积》教学反思 篇12本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学总结了一些成功的经验和失败的教训,具体概括为以下几点:
1、亲身经历,感知公式推导过程。全体学生亲身经历,动手剪一剪、拼一拼,推导平行四边形面积。教学中,我先让学生在动手剪、拼的过程中,得到长方形。
2、利用课件,直观演示。
3、语言抽象。
以上面两个环节为基础,让学生回过头来想一想,“我们是怎样得出平行四边形的面积的”,学生把自己的所做、所看、所想,用自己的语言充分地表达出来,并进行利用。
4、把数学知识的教学融于现实情境中,学生在情境中学得高兴,学得扎实。我通过四小校门口这一个情境,将新知的学习置于这一现实情景中,进一步加强数学知识与生活的联系,感受数学在生活中的'作用,体会学习数学的意义与价值。
5、充分发挥学生的主体作用,加强学生主观能动性的培养。
6、有效地渗透了数学的一些思考和学习方法。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。
7、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
《平行四边形的面积》教学反思 篇13本节课是平行四边形面积计算的第一课时,重点是探索并掌握平行四边形的面积计算公式,会用公式计算平等四边形的面积(须找准平行四边形底与对应的高)。难点是探索平等四边形的面积计算公式(用割补法把平等四边形变成长方形,根据长方形面积公式推导出平行四边形的`面积公式),这也是我们以后探索三角形、梯形面积公式的一种基本方法。
因此,作为第一课时,我设计的重点就在推导平行四边形面积计算公式的自然引导及探索过程和找准平行四边形的底和高计算面积底和高。一节课教学下来,反思有以下不足:
(1)从教师自身来说,有点紧张,导致关注学生不够,学生的积极性调动不理想。
(2)从设计来说,旧知导入(出示生活中的情景图找学过的图形并抽象出长方形,平行四边形。比在教室里找图形节省时间得多);例2可作为一个基本练习,不作为例题,这样练习题型可丰富些。
(3)从现场教学效果来说,本节课设计了一个思考题可以培养学生的思维能力及空间想象能力,但因为断电和时间关系未展示;另一个最为遗憾的是学生反思与小结,应将推导平行四边形面积计算公式的过程提升到一个理性的高度,师适当用一两句话小结,以便为今后图形面积计算公式的探索打下基。
《平行四边形的面积》教学反思 篇14《平形四边形的面积》是学生第一次用转化的思想方法探索面积计算公式,在探究过程中获得的数学思想、活动经验对学生下一步探索三角形、梯形和圆面积公式具有很强的借鉴作用,因此转化的方法和转化思想的渗透无疑是本课教学的重要目标。
一、注重数学专业思想方法的渗透。
我在这节课中,先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,有利于有能力的同学向转化的方法靠拢。
二、注重学生数学思维的发展。
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的.面积=底乘高。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动。
在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。例如:当学生展示完自己的方法后,教师引导:你认为他的方法怎么样?好在哪儿?你还有什么问题?通过教师设计的这些问题,不断地把课堂引上了师生互动,生生互动的高潮。
四、练习的设计,由浅入深,环环相扣。
1、让学生进行两个平行四边形面积的计算,是对平行四边形面积公式的应用。
2、让学生对平行四边形面积公式逆向思考,给了面积和底或高求高或底。
3、辨析同底等高的平行四边形面积是否相等。
五、我的遗憾
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。
教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。