精选小学数学教案范文汇编9篇
作为一位兢兢业业的人民教师,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?以下是小编为大家收集的小学数学教案9篇,仅供参考,大家一起来看看吧。
小学数学教案 篇1教学目标:
1、借助学生已有的数学知识经验去梳理,使知识系统化。学生在主动参与解决实际数学问题中,掌握运用数学知识。
2、 通过练习,进一步理解圆的周长和面积的含义,掌握圆的周长和面积的计算方法。
教学重难点:能用圆的知识解决生活中简单的实际问题。
教学过程:
一、 认识圆。
1、同学们画面中的这个图形叫什么?前面我们已经学习了圆的有关知识,今天这节课我们就来复习圆的知识。你还记得这个单元我们都学了哪些内容吗?
2、在圆的认识里,你们知道了哪些知识?请拿出自己做的圆形纸片,在里面标出圆心、半径、直径,并用字母表示。
3、直径和半径之间有什么关系?(强调:同一圆或等圆)你还知道圆的那些知识?前面我们还学习了哪些对称图形?在这些对称图形中哪种图形的对称轴最少,哪种图形的对称轴最多?
4、看来大家对圆的认识都掌握得很不错,圆周长和面积是指哪一部分?摸摸看。
二、回忆所学的方法。
1、你是怎样求圆的周长?(量 公式)是指什么?你还了解圆周率的那些历史?
2、你是怎样知道圆面积的?(数方格 剪拼)
3、圆面积的.推导实际用到了什么思想?(转化思想)
4、把圆转化成平行四边形或长方形,什么变了?什么没变?(出示课件)
5、求圆面积有几种方法?
6、你能不能算出你手中圆形纸片的周长和面积。指名说算法。
7、计算时应注意什么?(公式 单位)
三、指导练习
1、判断下列说法是否正确。
(1)半径是 2厘米 的圆的周长和面积相等。( )
(2)两个半圆一定能拼成一个圆。 ( )
(3)半圆形纸片的周长就是圆周长的一半。( )
(4)把半径 3厘米 的圆等分成十六份,拼成一个近似长方形,长方形的周长比圆的周长多。( )
(5)大圆的圆周率比小圆的圆周率大。( )
2、走进生活,解决问题。
(1)车轮为什么设计成圆的?
(2)运动场上为什么运动员不在一个起跑线上。出示课件:
(3)小羊能吃到草的面积有多大?
林业部门需要测量一棵古树树干横截面的面积,树干横截面是什么形状?可是又不知道它的半径或直径,总不能把这棵千年古树砍倒后量一量,你能不能帮他们想一个办法?
(4)一根长 4米 的绳子围了一圈后还剩 0.86米 ,请你算算树干横截面面积大约是多少平方米?
(5)用篱笆靠墙围一个直径是 4米 的半圆形的养鸡场,求篱笆的长和占地的面积。
四、师生总结。
通过本节课学习有怎样的收获?
小学数学教案 篇2一、应用题的来源应具备情感化、生活化和主题化。
在现实的课堂教学中,很多老师在导入或新授环节考虑了题材的生活化,但在练习中体现较少,或者说学习内容的生活化没有很好的贯穿于学生的整个学习过程。其实从课的导入,新授,练习及发展都可以统一在一个生活化的主题之下。另外,许多老师教学应用题时,将课题命名为“应用题”,这个名称在学生的大脑中并无多少概念,过于空洞,应更为形象与具体。比如,《游动物园中的问题》、《森林探险》等,相对于平均数问题,归一问题,工程问题等课题而言,对于学生来说更容易理解与接受,有吸引力,利于学生对学习材料产生兴趣,利于其以积极主动的姿态投入学习。更为重要的是这种对数学与现实生活联系的强调,也利于学生形成用数学的眼光看世界、主动地运用数学知识分析生活现象、主动得解决生活中所遇到的实际问题的能力。即发展良好的应用意识。
例如,在教学了分数应用题之后,可以设计如下问题:有一天,老师带了600元钱到家具公司买家具,便看见那里的家具都在降价。忽然,老师看见一套家具组合,老师很喜欢。衣柜200元,梳妆柜的价钱是衣柜的4/5,床的价钱比衣柜贵1/5。请你帮老师预算一下,老师带的钱够不够?又例如,在教学了按比例分配应用题之后,可以设计这样一道思考题让学生想办法由自己调制成一种盐与水的浓度为1:4的溶液。学生在解决这些问题时,与其说是在解答应用题,还不如说是在做身边的一件事情,他们不再是为了单纯的解题而解题,而是在尝试用自己的数学思维方式去观察生活。学生一定会兴趣倍增,积极性提高。
二、应用题的呈现方式应多样。
现实世界千姿百态,蕴含信息的方式也就多种多样,因而人们在日常生活中所接触到的问题更多的则是以表格、图文形式出现的,纯文字叙述的问题很少。所以要培养学生解决实际问题的意识和能力,就势必也需要在教学中创设一个类似于真实的生活的情境。而以前传统的应用题教学中,呈现方式比较单一,大多为文字叙述的结构也比较简单,总是若干个条件加上一个问题,所有的条件都用上后,正好解答出问题;解题的技巧性强,对提高学生的观察、分析、类比、推理等思维能力的帮助则不是很大。因此,随着课程改革的不断深入,在《课标》中则明确指出:“内容的呈现应采用不同的表达方式,以满足多样的学习需要。”在教学中,教师也可以突破教材在内容呈现方式上的局限性,采用多种多样的形式,将“纯文字化”的表达模式有机地与表格、漫画、情境图、数据单、情景剧表演等有效地结合起来,广泛地采用于教学之中。这样,既直观又形象,而且还图文并茂,生动有趣地呈现出素材,提高学生的兴趣,满足了多样化的学生的需求。
例如,在教学求平均数的应用题的时候后,我们可以尽量选取日常生活中常见的一些图表或数据,让学生结合表格来研究。如某一月的空气污染指数,某一个班学生测验的平均成绩等等。再例如“小青买了两本练习本,一枝毛笔,共用了四元钱。其中已知了一枝毛笔是两元钱,问一本练习本是多少钱?”这种应用题的呈现方式单一而且封闭,都是文字叙述,两、三个条件再加上一个问题。如果这种题目反反复复,出现的次数多了,学生的心里就会产生厌烦。如果是那样的话,做出来的效果肯定不佳。而对于同样一道例题,改用其他的方式呈现,如图文应用题。这样就使原本枯燥乏味,冷飕飕的数字罗列的应用题变成了活泼生动,容易被学生所接受,也符合学生的认知发展特点。
三、应用题解题的多样化、开放化。
对学生的发展而言,解决问题的学习价值不只是获得问题的结论或答案,其意义在于学生通过解决问题的教学活动,体验方法,以形成策略。在应用题教学中,我们不能把目光紧紧地定格在答案上,更应该 ……此处隐藏6421个字……>
10个一百是一千,一千里面有10个一百
作业设置:自主练习4、6
课后:
小学数学教案 篇9教学过程:
一、谈话引出情境,呈现知识起点
师:你们喜欢购物吗?这是小军在文具店购买学习用品(在与学生的谈话中出示购物
情境图,先呈现小军来购物的情境,改动教材小军和小晴同时呈现的购物情境)。
师:看到这幅图,你知道了哪些信息?(呈现三种学习用品的标价)
生:一本笔记本5元,一个书包20元,一盒水彩笔18元。
师:小军想买3本笔记本和一个书包,请你替小军算一算一共要用去多少钱?
生:53=15元,15+20=35(元)
师:观察上面的算式,在解决小军用去多少钱的问题时,用了几步计算?
生:两步。
师:也就是用了两个算式。
师:有没有列不同算式的?
有个别同学列成如下算式,并进行了计算。
①53+20=15+20=35
②53+20=15+20=35
师:板书学生的算式作为后面交流的素材。
师:黑板上这两个同学列的是一个算式,你同意他们这样的写法吗?你们也试着写一写(有了分步列式的基础,大部分同学都会列出53+20的算式)。
师:这一道算式能包含上面的两个算式吗?说说你的想法。
生:能,算式53+20中,第一步计算53的积是15,第二步计算15+20的和是35。
师:刚才这位同学说出第一步、第二步,也就是说53+20这个算式要几步计算?
生:两步。
师:哪两步?
生:第一步是算乘,第二步是算加。
师:这就是我们今天要解决的问题两步混合运算(板书课题)。
师:结合情境图谁能说一说53+20,第一步先算什么?表示什么意思?第二步再算什么?又表示什么意思?
生:第一步先算53,表示买3本笔记本用的钱。第二步再加上买书包的20元,表示一共用去多少钱。
师:结合情境图说一说53+20,能先算3+20吗?(学生基本上能结合实际情境说出不能先算3+20的道理)
师:对比分步与综合算式,比较它们之间的联系与区别。
生:分步算式第一步计算的结果直接写在算式的后面,而综合算式要把第一步的计算结果写在算式的下面。教师配合学生的发言在综合算式和分步算式算法中相机用红笔标出。
【设计意图】:新教材融计算于解决问题之中,这是源于计算是为了解决问题的'需要,现实生活中就是这样的,只有在解决问题时才需要计算。因此,混合运算顺序的规定,也应是这样的。整改情境图分层出示数学问题,既便于突出学生所要解决的主要问题,又便于在解决问题中体验、理解综合算式与分步算式的联系,实现为了解决问题用综合算式需要运算顺序需要在解决问题情景中去分析运算顺序的建构过程,实现计算与应用交融的目的。
二、丰富算、用材料,再次感悟运算顺序
师:投影增添小晴来购物的动画情景。
师:小晴付50元钱买2盒水彩笔,请你帮小晴算一算她带的钱够不够?(生马上回答:够了)
师:为什么?应找回多少钱?(学生基本上能分步口算得出结果)
师:请同学们列综合算式并尝试解答。
生:50-182
师:第一步先算什么?表示什么?第二步算什么?又表示什么?
生:第一步先算182,表示买2盒水彩笔的钱。第二步再用50去减182的积,表示应找回的钱。
师:现在老师写两个算式,你能结合情境图说说分别在解决什么问题吗?
师:18+53;182-20
(由于情境图信息比较简单,学生都能结合情境图说出每道算式解决的是什么问题) 师:请同学板书上面三道算式。
师:比较53+20和18+53;182-20和50-182两组算式,你发现了什么?体验不论乘法在前还是在后,都要先算乘法后算加、减的道理。
【设计意图】创设丰富的算、用材料,让学生通过情境提炼数学问题,;根据算式寻找数学问题,让学生经历以用引算,以算激用的过程。尤其是两组算式的对比,让学生深层次地理解运算顺序的实质,拓展了运算顺序的认知。
三、抽象概括运算顺序
师:黑板上有几道两部计算的综合算式,观察它们的运算符号有什么特点
生:都是乘加(减)
师:谁能说一说它们的运算顺序是怎样的。(大部分学生都能运用自己的语言进行叙述)
四、拓展延伸
师:继续增添情境图信息:一套3本《格林童话》共36元。①小明买4本。②小红买2套。
师:谁能结合情境图说一说,下面两个算式分别是解决什么问题?该怎样去计算呢?
3634 3626
生:3634是小明买4本《格林童话》要多少元?算式3626表示小红买一本《格林童话》要多少元?
师:结合情境图说一说,算式3634要先算什么?能先算什么?
师:算式3626呢?
师:你觉得乘除在一起运算,他们的运算顺序是怎样的?(学生通过观察,结合情境图中的解决问题,大部分都能说出运算顺序)
师:算式3634与算式3626在运算符号上有什么相同点?
生:都是乘除运算。
师:对比黑板上的几道只有乘加(减)和上面两道乘除算式的运算顺序。你有什么话想说?
生:乘加(减)两部计算的,要先算乘法再算加或减;乘除两部计算顺序,要按照顺序(从左到右)计算。
生:暂时不计算的数要把它移下来。
生:等于号要在算式的下面写,两个等于号要对齐。
师:配合学生的叙述,在算式的相应位置相机标示。
【设计意图】此环节再次通过增添数学问题情境,使学生再次以用引算、以算激用,为进一步拓展岸生对两步混合运算顺序的认知提供了丰富的素材,也沟通了练习题中的题组对比题之间的联系。
五、突出重点训练
第层次:质疑运算顺序,下面各组算式的运算顺序一样吗?
1.15+32 2.100-253
23+15 255-100
3.6484
6442
第二层次:说说每道题应先算什么?再计算。
233+50 166-9
38+415
第三层次:下面计算对吗?不对的请改正。
50+507 44-74
=l007 =28-40
=700 =8
153-25 3682
=45-25 =364
=20 =144
六、全课总结
1.有什么收获?
2.有什么问题?在计算混合运算时,你想给同学哪些友情提示?
3.你认为两步混合运算还会出现哪些情况?课后你能应用今天所学的方法去尝试解决吗?